4,434 research outputs found

    Block-Structured Supermarket Models

    Full text link
    Supermarket models are a class of parallel queueing networks with an adaptive control scheme that play a key role in the study of resource management of, such as, computer networks, manufacturing systems and transportation networks. When the arrival processes are non-Poisson and the service times are non-exponential, analysis of such a supermarket model is always limited, interesting, and challenging. This paper describes a supermarket model with non-Poisson inputs: Markovian Arrival Processes (MAPs) and with non-exponential service times: Phase-type (PH) distributions, and provides a generalized matrix-analytic method which is first combined with the operator semigroup and the mean-field limit. When discussing such a more general supermarket model, this paper makes some new results and advances as follows: (1) Providing a detailed probability analysis for setting up an infinite-dimensional system of differential vector equations satisfied by the expected fraction vector, where "the invariance of environment factors" is given as an important result. (2) Introducing the phase-type structure to the operator semigroup and to the mean-field limit, and a Lipschitz condition can be obtained by means of a unified matrix-differential algorithm. (3) The matrix-analytic method is used to compute the fixed point which leads to performance computation of this system. Finally, we use some numerical examples to illustrate how the performance measures of this supermarket model depend on the non-Poisson inputs and on the non-exponential service times. Thus the results of this paper give new highlight on understanding influence of non-Poisson inputs and of non-exponential service times on performance measures of more general supermarket models.Comment: 65 pages; 7 figure

    A Matrix-Analytic Solution for Randomized Load Balancing Models with Phase-Type Service Times

    Full text link
    In this paper, we provide a matrix-analytic solution for randomized load balancing models (also known as \emph{supermarket models}) with phase-type (PH) service times. Generalizing the service times to the phase-type distribution makes the analysis of the supermarket models more difficult and challenging than that of the exponential service time case which has been extensively discussed in the literature. We first describe the supermarket model as a system of differential vector equations, and provide a doubly exponential solution to the fixed point of the system of differential vector equations. Then we analyze the exponential convergence of the current location of the supermarket model to its fixed point. Finally, we present numerical examples to illustrate our approach and show its effectiveness in analyzing the randomized load balancing schemes with non-exponential service requirements.Comment: 24 page

    Sweet cherry:composition, postharvest preservation, processing and trends for its future use

    Get PDF
    Background Sweet cherries (Prunus avium L.) are a nutritious fruit which are rich in polyphenols and have high antioxidant potential. Most sweet cherries are consumed fresh and a small proportion of the total sweet cherries production is value added to make processed food products. Sweet cherries are highly perishable fruit with a short harvest season, therefore extensive preservation and processing methods have been developed for the extension of their shelf-life and distribution of their products. Scope and Approach In this review, the main physicochemical properties of sweet cherries, as well as bioactive components and their determination methods are described. The study emphasises the recent progress of postharvest technology, such as controlled/modified atmosphere storage, edible coatings, irradiation, and biological control agents, to maintain sweet cherries for the fresh market. Valorisations of second-grade sweet cherries, as well as trends for the diversification of cherry products for future studies are also discussed. Key Findings and Conclusions Sweet cherry fruit have a short harvest period and marketing window. The major loss in quality after harvest include moisture loss, softening, decay and stem browning. Without compromising their eating quality, the extension in fruit quality and shelf-life for sweet cherries is feasible by means of combination of good handling practice and applications of appropriate postharvest technology. With the drive of health-food sector, the potential of using second class cherries including cherry stems as a source of bioactive compound extraction is high, as cherry fruit is well-known for being rich in health-promoting components

    Physical, barrier, and antioxidant properties of pea starch-guar gum biocomposite edible films by Incorporation of natural plant extracts

    Get PDF
    Active food packaging based on pea starch and guar gum (PSGG) films containing natural antioxidants (NAs) was developed. Four kinds of NAs (epigallocatechin gallate (EGCG), blueberry ash (BBA) fruit extract, macadamia (MAC) peel extract, and banana (BAN) peel extract) were added into the PSGG-based films as antioxidant additive. The effects of these compounds at different amounts on the physical and antioxidant characteristics of the PSGG film were investigated. The antioxidant activity was calculated with three analytical assays: DPPH radical scavenging ability assay, cupric reducing antioxidant capacity (CUPRAC), and ferric reducing activity power (FRAP). EGCG-PSGG films showed higher antioxidant activity, followed by BBA-PSGG, MAC-PSGG, and BAN-PSGG films, at all concentrations (0.75–3 mg/mL) and with all procedures tested. Additionally, the antioxidant activity of films showed a concentration dependency. The results revealed that addition of NAs made the PSGG film darker and less transparent. However, the moisture barrier was significantly improved when NAs were incorporated into the film. The FTIR spectra were examined to determine the interactions between polymers and NAs. The results suggested that incorporation of EGCG, BBA, MAC, and BAN into PSGG films have great potential for use as active food packaging for food preservation

    Encapsulation of citrus by-product extracts by spray-drying and freeze-drying using combinations of maltodextrin with soybean protein and ι-carrageenan

    Get PDF
    The effect of different combinations of maltodextrin (MD) coating agents (MD, MD + soybean protein, and MD + ι-carrageenan) on the encapsulation of lemon by-product aqueous extracts using freeze-drying and spray-drying were investigated. The total phenolic content (TPC), total flavonoid content (TFC), and ferric ion reducing antioxidant power (FRAP) of the microparticles were evaluated. Freeze-drying with the mixture of MD + soybean protein resulted in the highest retention of TPC, TFC, and FRAP (1.66 ± 0.02 mg GAE/g d.b., 0.43 ± 0.02 mg CE/g d.b., and 3.70 ± 0.05 mM TE/g, respectively). Freeze-drying resulted in microparticles with lower moisture content (MC) and water activity (aw) than those produced by spray-drying. Specifically, the MC and aw of the microparticles produced by freeze-drying ranged from 1.15 to 2.15% and 0.13 to 0.14, respectively, while the MC and aw of the microparticles produced by spray-drying ranged from 6.06% to 6.60% and 0.33 to 0.40, respectively. Scanning electron microscopy revealed that spray-drying resulted in the formation of spherical particles of different sizes regardless of the type of coating agent. Although freeze-drying resulted in microparticles with amorphous glassy shapes, the mixture of MD + soybean protein resulted in the formation of spherical porous particles. X-ray diffraction revealed a low degree of crystallinity for the samples produced by both techniques.</p

    The application of low pressure storage to maintain the quality of zucchinis

    Get PDF
    Zucchini (Cucurbita pepo var. cylindrica) were stored at low pressure (4 kPa) at 10°C at 100% relative humidity for 11 days. Fruit quality was examined upon removal and after being transferred to normal atmosphere (101 kPa) at 20°C for three days. Zucchinis stored at low pressure exhibited a 50% reduction in stem-end browning compared with fruit stored at atmospheric pressure (101 kPa) at 10°C. The benefit of low pressure treatment was maintained after the additional three days storage at normal atmospheric pressure at 20°C. Indeed, low pressure treated fruit transferred to regular atmosphere 20°C for three days possessed a significantly lower incidence of postharvest rot compared to fruit stored at regular atmospheric pressure at 10°C. Zucchinis stored at low pressure showed higher levels of acceptability (28% and 36%, respectively) compared to fruit stored at regular atmospheres at 10°C for both assessment times.<br/
    • …
    corecore